Mapping Song Lyric Locations in Python

Here’s an overview of how to map the coordinates of cities mentioned in song lyrics using Python. In this example, I used Lana Del Rey’s lyrics for my data and focused on United States cities. The full code for this is in a Jupyter Notebook on my GitHub under the lyrics_map repository.

A Lana Del Rey album booklet on a map
A map with Lana Del Rey’s Lust for Life album booklet.

Gather Bulk Song Lyrics Data

First, create an account with Genius to obtain an API key. This is used for making requests to scrape song lyrics data from a desired artist. Store the key in a text file. Then, follow the tutorial steps from this blog post by Nick Pai and reference the API key text file within the code.

You can customize the code to cater to a certain artist and number of songs. To be safe, I put in a request for lyrics from 300 songs.

Find Cities and Countries in the Data

After getting the song lyrics in a text file, open the file and use geotext to grab city names. Append these to a new pandas dataframe.

places = GeoText(content)
cities_from_text = places.cities
city_mentions = pd.DataFrame(cities_from_text, columns=['city'])

Use GeoText to gather country mentions and put these in a column. Then, clean the raw output and create a new dataframe querying only on the United States.

Personally, I focus only on United States cities to reduce errors from geotext reading common words such as ‘Born’ as foreign city names.

A three column dataframe shows city and two country columns.
The results from geotext city and country mentions in a dataframe, with a cleaned country column.
f = lambda x: GeoText(x).country_mentions
origin = city_mentions['city'].apply(f)
city_mentions['country_raw'] = origin

fn = lambda x: list(x)[0]
city_mentions['country'] = city_mentions['country_raw'].apply(fn)

city_mentions = city_mentions[city_mentions['country'] == 'US']

Afterwards, remove the country columns and manually clean the city data. I removed city names that seemed inaccurate.

city_mentions.drop(columns=['country_raw', 'country'], inplace=True)

cities_to_remove = ['Paris','Mustang','Palm','Bradley','Sunset','Pontiac','Green','Paradise',
    'Mansfield','Eden','Crystal','Monroe','Columbia','Laredo','Joplin','Adrian',
    'York','Golden','Oklahoma','Kansas','Coachella','Kokomo','Woodstock']

city_mentions = city_mentions[~city_mentions['city'].isin(cities_to_remove)]

In my example, I corrected Newport and Venice to include ‘Beach’. I understand this can be cumbersome with larger datasets, but I did not see it imperative to automate this task for my example.

city_mentions = city_mentions.replace(to_replace ='Newport', value ='Newport Beach')
city_mentions = city_mentions.replace(to_replace ='Venice', value ='Venice Beach')

Next, save a list and a dataframe with value counts for each city to be used later for the map. Reset the index as well to have the two columns as city and mentions.

city_val_counts = city_mentions['city'].value_counts()
city_counts = pd.DataFrame(city_val_counts)

city_counts = city_counts.reset_index()
city_counts.columns = ['city', 'mentions']
A two column dataframe shows cities and number of mentions.
A pandas dataframe shows city and number of song mentions.

Then, create a list of the unique city values.

unique_list = (city_mentions['city'].unique().tolist())

Geocode the City Names

Use GeoPy to geocode the cities from the unique list, which pulls associated coordinates and location data. The user agent needs to be specified to avoid an error. Create a dataframe from this output.

chrome_user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.92 Safari/537.36"
geolocator = Nominatim(timeout=10,user_agent=chrome_user_agent)

lat_lon = []
for city in unique_list: 
    try:
        location = geolocator.geocode(city)
        if location:
            lat_lon.append(location)
    except GeocoderTimedOut as e:
        print("Error: geocode failed on input %s with message %s"%
             (city, e))

city_data = pd.DataFrame(lat_lon, columns=['raw_data','raw_data2'])
city_data = city_data[['raw_data2', 'raw_data']]

This yields one column as the latitude and longitude and another with comma separated location data.

A two column dataframe showing coordinates and location data such as city, county, zip code and state
The raw output of GeoPy’s geocode function in a pandas dataframe, showing the coordinates and associated location fields in a list.

Reduce the Geocode Data to Desired Columns

I cleaned my data to have only city names and associated coordinates. The output from GeoPy allows for more information such as county and state, if desired.

To split the location data (raw_data) column, convert it to a string and then split it and create a new column (city) from the first indexed object.

city_data['city'] = city_data['raw_data'].str.split(',').str[0]
A three column datadrame shows two columns of geocoded output and one for city names.
A dataframe with the outputs from GeoPy geocoder with one new column for string split city names.

Then, convert the coordinates column (raw_data2) into a string type to remove the parentheses and finally split on the comma.

#change the coordinates to a string
city_data['raw_data2'] = city_data['raw_data2'].astype(str)

#split the coordinates using the comma as the delimiter
city_data[['lat','lon']] = city_data.raw_data2.str.split(",",expand=True,)

#remove the parentheses
city_data['lat'] = city_data['lat'].map(lambda x:x.lstrip('()'))
city_data['lon'] = city_data['lon'].map(lambda x:x.rstrip('()'))

Convert the latitude and longitude columns back to floats because this is the usable type for plotly.

city_data = city_data.astype({'lat': 'float64', 'lon': 'float64'})

Next, drop all the unneeded columns.

city_data.drop(['raw_data2', 'raw_data'], axis = 1, inplace=True)

Drop any duplicates and end up with a clean set of city, latitude, and longitude.

city_data.drop_duplicates(keep=False,inplace=True)
A three column dataframe shows city, latitude, and longitude.
The cleaned dataframe for the city, latitude, and longitude.

Create the Final Merged DataFrame and Map

Merge the city coordinates dataframe and city mentions dataframe using a left join on city names.

merged = pd.merge(city_data, city_counts, on='city', how='left')
A four column dataframe shows city names, latitude, longitude, and number of mentions
The final merged dataframe with city, latitude, longitude, and number of song mentions.

Create an account with MapBox to obtain an API key to plot my song lyric locations in a Plotly Express bubble map. Alternatively, it is also possible to generate the map without an API key if you have Dash installed. Customize the map for visibility by adjusting variables such as the color scale, the zoom extent, and the data that appears when hovering over the data.

px.set_mapbox_access_token(open("mapbox_token.txt").read())
df = px.data.carshare()
fig = px.scatter_mapbox(merged, lat='lat', lon='lon', color='mentions', size='mentions',
                  color_continuous_scale=px.colors.sequential.Agsunset, size_max=40, zoom=3, 
                        hover_data=['city'])
fig.update_layout(
    title={
        'text': 'US Cities Mentioned in Lana Del Rey Songs',
        'y':0.95,
        'x':0.5,
        'xanchor': 'center',
        'yanchor': 'top'})
fig.show()

#save graph as html
with open('plotly_graph.html', 'w') as f:
    f.write(fig.to_html(include_plotlyjs='cdn'))

Spotify Web API: How to Pull and Clean Top Song Data using Python

Spotify Web API: How to Pull and Clean Top Song Data using Python

I used the Spotify Web API to pull the top songs from my personal account. I’ll go over how to get the fifty most popular songs from a user’s Spotify account using spotipy, clean the data, and produce visualizations in Python.

Top 50 Spotify Songs

Top 50 songs from my personal Spotify account, extracted using the Spotify API.
 SongArtistAlbumPopularity
1BorderlineTame ImpalaBorderline77
2GroceriesMallratIn the Sky64
3FadingToro y MoiOuter Peace48
4FanfareMagic City HippiesHippie Castle EP57
5LimestoneMagic City HippiesHippie Castle EP59
6High Steppin'The Avett BrothersCloser Than Together51
7I Think Your Nose Is BleedingThe Front BottomsAnn43
8Die Die DieThe Avett BrothersEmotionalism (Bonus Track Version)44
9SpiceMagic City HippiesModern Animal42
10Bleeding WhiteThe Avett BrothersCloser Than Together53
11Prom QueenBeach BunnyProm Queen73
12SportsBeach BunnySports65
13FebruaryBeach BunnyCrybaby51
14Pale Beneath The Tan (Squeeze)The Front BottomsAnn43
1512 Feet DeepThe Front BottomsRose49
16Au Revoir (Adios)The Front BottomsTalon Of The Hawk50
17FreelanceToro y MoiOuter Peace57
18SpacemanThe KillersDay & Age (Bonus Tracks)62
19Destroyed By Hippie PowersCar Seat HeadrestTeens of Denial51
20Why Won't They Talk To Me?Tame ImpalaLonerism59
21FallingwaterMaggie RogersHeard It In A Past Life71
22Funny You Should AskThe Front BottomsTalon Of The Hawk48
23You Used To Say (Holy Fuck)The Front BottomsGoing Grey47
24Today Is Not RealThe Front BottomsAnn41
25FatherThe Front BottomsThe Front Bottoms43
26Broken BoyCage The ElephantSocial Cues60
27Wait a Minute!WILLOWARDIPITHECUS80
28Laugh Till I CryThe Front BottomsBack On Top47
29Nobody's HomeMallratNobody's Home56
30Apocalypse DreamsTame ImpalaLonerism60
31Fill in the BlankCar Seat HeadrestTeens of Denial56
32SpiderheadCage The ElephantMelophobia57
33Tie Dye DragonThe Front BottomsAnn47
34Summer ShandyThe Front BottomsBack On Top43
35At the BeachThe Avett BrothersMignonette51
36MotorcycleThe Front BottomsBack On Top41
37The New Love SongThe Avett BrothersMignonette42
38Paranoia in B MajorThe Avett BrothersEmotionalism (Bonus Track Version)49
39AberdeenCage The ElephantThank You Happy Birthday54
40Losing TouchThe KillersDay & Age (Bonus Tracks)51
41Four of a KindMagic City HippiesHippie Castle EP46
42Cosmic Hero (Live at the Tramshed, Cardiff, Wa...Car Seat HeadrestCommit Yourself Completely34
43Locked UpThe Avett BrothersCloser Than Together49
44Bull RideMagic City HippiesHippie Castle EP49
45The Weight of LiesThe Avett BrothersEmotionalism (Bonus Track Version)51
46Heat WaveSnail MailLush60
47Awkward ConversationsThe Front BottomsRose42
48Baby Drive It DownToro y MoiOuter Peace47
49Your LoveMiddle KidsMiddle Kids EP29
50Ordinary PleasureToro y MoiOuter Peace58

Using Spotipy and the Spotify Web API

First, I created an account with Spotify for Developers and created a client ID from the dashboard. This provides both a client ID and client secret for your application to be used when making requests to the API.

Next, from the application page, in ‘Edit Settings’, in Redirect URIs, I add http://localhost:8888/callback . This will come in handy later when logging into a specific Spotify account to pull data.

Then, I write the code to make the request to the API. This will pull the data and put it in a JSON file format.

I import the following libraries:

  • Python’s OS library to facilitate the client ID, client secret, and redirect API for the code using the computer’s operating system. This will temporarily set the credentials in the environmental variables.
  • Python’s json library to encode the data.
  • Spotipy to provide an authorization flow for logging in to a Spotify account and obtain current top tracks for export.
import os
import json
import spotipy
from spotipy.oauth2 import SpotifyClientCredentials
import spotipy.util as util

Next, I define the client ID and secret to what has been assigned to my application from the Spotify API. Then, I set the environmental variables to include the the client ID, client secret, and the redirect URI.

cid ="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" 
secret = "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

os.environ['SPOTIPY_CLIENT_ID']= cid
os.environ['SPOTIPY_CLIENT_SECRET']= secret
os.environ['SPOTIPY_REDIRECT_URI']='http://localhost:8888/callback'

Then, I work through the authorization flow from the Spotipy documentation. The first time this code is run, the user will have to provide their Sptofy username and password when prompted in the web browser.

username = ""
client_credentials_manager = SpotifyClientCredentials(client_id=cid, client_secret=secret) 
sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager)
scope = 'user-top-read'
token = util.prompt_for_user_token(username, scope)

if token:
    sp = spotipy.Spotify(auth=token)
else:
    print("Can't get token for", username)

In the results section, I specify the information to pull. The arguments I provide indicate 50 songs as the limit, the index of the first item to return, and the time range. The time range options, as specified in Spotify’s documentation, are:

  • short_term : approximately last 4 weeks of listening
  • medium_term : approximately last 6 months of listening
  • long_term : last several years of listening

For my query, I decided to use the medium term argument because I thought that would give the best picture of my listening habits for the past half year. Lastly, I create a list to append the results to and then write them to a JSON file.

if token:
    sp = spotipy.Spotify(auth=token)
    results = sp.current_user_top_tracks(limit=50,offset=0,time_range='medium_term')
    for song in range(50):
        list = []
        list.append(results)
        with open('top50_data.json', 'w', encoding='utf-8') as f:
            json.dump(list, f, ensure_ascii=False, indent=4)
else:
    print("Can't get token for", username)

After compiling this code into a Python file, I run it from the command line. The output is top50_data.JSON which will need to be cleaned before using it to create visualizations.

Cleaning JSON Data for Visualizations

The top song data JSON file output is nested according to different categories, as seen in the sample below.

 "artists": [
                    {
                        "external_urls": {
                            "spotify": "https://open.spotify.com/artist/5PbpKlxQE0Ktl5lcNABoFf"
                        },
                        "href": "https://api.spotify.com/v1/artists/5PbpKlxQE0Ktl5lcNABoFf",
                        "id": "5PbpKlxQE0Ktl5lcNABoFf",
                        "name": "Car Seat Headrest",
                        "type": "artist",
                        "uri": "spotify:artist:5PbpKlxQE0Ktl5lcNABoFf"
                    }
                ],
                "disc_number": 1,
                "duration_ms": 303573,
                "explicit": true,
                "href": "https://api.spotify.com/v1/tracks/5xy3350chgFfFcdTET4xz3",
                "id": "5xy3350chgFfFcdTET4xz3",
                "is_local": false,
                "name": "Destroyed By Hippie Powers",
                "popularity": 51,
                "preview_url": "https://p.scdn.co/mp3-preview/cd1a18f3f7c8ada17bb54c55524ef42e80719d1f?cid=39e9cdce36dc45e589ce5b564c0594a2",
                "track_number": 3,
                "type": "track",
                "uri": "spotify:track:5xy3350chgFfFcdTET4xz3"
            },

Before cleaning the JSON data and creating visualizations in a new file, I import json, pandas, matplotlib, and seaborn. Next, I load the JSON file with the top 50 song data.

import json
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb

with open('top50_data.json') as f:
  data = json.load(f)

I create a full list of all the data to start. Next, I create lists where I will append the specific JSON data. Using a loop, I access each of the items of interest for analysis and append them to the lists.

list_of_results = data[0]["items"]
list_of_artist_names = []
list_of_artist_uri = []
list_of_song_names = []
list_of_song_uri = []
list_of_durations_ms = []
list_of_explicit = []
list_of_albums = []
list_of_popularity = []

for result in list_of_results:
    result["album"]
    this_artists_name = result["artists"][0]["name"]
    list_of_artist_names.append(this_artists_name)
    this_artists_uri = result["artists"][0]["uri"]
    list_of_artist_uri.append(this_artists_uri)
    list_of_songs = result["name"]
    list_of_song_names.append(list_of_songs)
    song_uri = result["uri"]
    list_of_song_uri.append(song_uri)
    list_of_duration = result["duration_ms"]
    list_of_durations_ms.append(list_of_duration)
    song_explicit = result["explicit"]
    list_of_explicit.append(song_explicit)
    this_album = result["album"]["name"]
    list_of_albums.append(this_album)
    song_popularity = result["popularity"]
    list_of_popularity.append(song_popularity)

Then, I create a pandas DataFrame, name each column and populate it with the above lists, and export it as a CSV for a backup copy.

all_songs = pd.DataFrame(
    {'artist': list_of_artist_names,
     'artist_uri': list_of_artist_uri,
     'song': list_of_song_names,
     'song_uri': list_of_song_uri,
     'duration_ms': list_of_durations_ms,
     'explicit': list_of_explicit,
     'album': list_of_albums,
     'popularity': list_of_popularity
     
    })

all_songs_saved = all_songs.to_csv('top50_songs.csv')

Using the DataFrame, I create two visualizations. The first is a count plot using seaborn to show how many top songs came from each artist represented in the top 50 tracks.

descending_order = top50['artist'].value_counts().sort_values(ascending=False).index
ax = sb.countplot(y = top50['artist'], order=descending_order)

sb.despine(fig=None, ax=None, top=True, right=True, left=False, trim=False)
sb.set(rc={'figure.figsize':(6,7.2)})

ax.set_ylabel('')    
ax.set_xlabel('')
ax.set_title('Songs per Artist in Top 50', fontsize=16, fontweight='heavy')
sb.set(font_scale = 1.4)
ax.axes.get_xaxis().set_visible(False)
ax.set_frame_on(False)

y = top50['artist'].value_counts()
for i, v in enumerate(y):
    ax.text(v + 0.2, i + .16, str(v), color='black', fontweight='light', fontsize=14)
    
plt.savefig('top50_songs_per_artist.jpg', bbox_inches="tight")
A countplot shows artists in descending song counts in total top tracks from Spotify.
A countplot shows the number of songs per artists in the top 50 tracks from greatest to least.

The second graph is a seaborn box plot to show the popularity of songs within individual artists represented.

popularity = top50['popularity']
artists = top50['artist']

plt.figure(figsize=(10,6))

ax = sb.boxplot(x=popularity, y=artists, data=top50)
plt.xlim(20,90)
plt.xlabel('Popularity (0-100)')
plt.ylabel('')
plt.title('Song Popularity by Artist', fontweight='bold', fontsize=18)
plt.savefig('top50_artist_popularity.jpg', bbox_inches="tight")
A graph shows the varying levels of song popularity per artist in top tracks from Spotify.
A boxplot shows the different levels of song popularity per artist in top 50 Spotify tracks.

Further Considerations

For future interactions with the Spotify Web API, I would like to complete requests that pull top song data for each of the three term options and compare them. This would give a comprehensive view of listening habits and could lead to pulling further information from each artist.

How to Scrape Hypertext from Tables Using Beautiful Soup

To get some web scraping practice, I wanted to obtain a large list of animal names. Colorado State University has a list of links to this data as a part of the Warren and Genevieve Garst Photographic Collection. The data is stored in table format. Here’s how to scrape hypertext data from HTML tables using Beautiful Soup.

Inspect the Data

First, visit the web page and inspect the data you would like to scrape. On Window, this means either right-clicking a desired element and selecting ‘Inspect’ or hitting Ctrl+Shift+I to open up the browser’s developer tools.

A screenshot of the window that appears after right-clicking an element on Windows before inspection.
Screen that appears after right-clicking an element on the web page.
Screenshot of the DevTools window showing the selected element and its surrounding HTML that we'll need to scrape the data.
Inspected element in the Developer Tools window showing the HTML behind the page.

After inspecting the element, we see that it is in an HTML table and each row holds an entry for an animal name.

Scrape the Data

Before beginning, import the packages we’ll need now (requests and Beautiful Soup) and later on (pandas).

import pandas as pd
import requests
from bs4 import BeautifulSoup

Then, we’ll use a request to gather the HTML from the webpage.

page = requests.get('https://lib2.colostate.edu/wildlife/atoz.php?letter=ALL')

Next, we’ll create a Beautiful Soup object referencing the page variable.

soup = BeautifulSoup(page.text, 'html.parser')

Using the object we just created, let’s gather all the row data by appending it a new list.

rows = soup.find_all('tr')
list_animals = []
for row in rows:         
    instance = row.get_text()
    list_animals.append(instance)

Afterwards, I create a pandas dataframe with the list we just generated and use the head() function to preview the output.

list_of_animals = pd.DataFrame(list_animals)
print(list_of_animals.head(10))
Preview of output from initial scraping of animal names and associated genus and species classification.
Initial dataframe preview of animal data after scraping.

Clean the Data

Based on our output, I want to refine the dataframe so the row entries are in a position to be split into two columns. First, I remove rows in index locations 0 through 2.

list1 = list1.drop([list1.index[0], list1.index[1], list1.index[2]])
Dataframe following row drop to leave only animal names and genus species.

Then, I drop the escape characters in the front and end of each cell entry using the lstrip() and rstrip() functions. I split the remaining column into two columns based on ‘Animal’ and ‘Genus Species’ by using str.split() to separate the row.

list1['v1'] = list1[0].map(lambda x: x.lstrip('\n').rstrip('\n'))
list1[['v1','v2']] = list1['v1'].str.split('\n',expand=True)
A table shows the dataframe with the original column, a new column with animal names, and another column with genus and species.
Separation of original column based on animal name and genus species.

Next, I reset the index and drop the index and original column. I rename columns ‘v1’ and ‘v2’ to their appropriate names.

list1 = list1.reset_index()
list1 = list1.drop(columns = ['index', 0])
list1 = list1.rename(columns={"v1": "common_name", "v2": "genus_species"})
A table shows the final dataframe resulting from cleaning with two columns as properly titled 'common_name' and 'genus_species'.
Final dataframe with columns named for common names and genus species.

Lastly, I save the dataframe in a comma-separated values file for later use.

animal_names_list = list1.to_csv(r'Path\...\animal_names_list.csv')

Analysis of USDA Plant Families Data Using Pandas

The United States Department of Agriculture PLANTS database provides general information about plant species across the country. Given 3 states, I wanted to visualize which plant families are present in each and which state(s) hold the most species in each family. To accomplish this task, I used Python’s pandas, matplotlib, and seaborn libraries for analysis.

Different groups of plants, including wildflowers, are arranged in a rock bed in the desert.
Various plant species in Death Valley National Park, California.

Initial Setup

Before beginning, I import pandas, matplotlib, and seaborn.

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb

Gathering Data

I pulled data sets from the USDA website for New York, Idaho, and California. The default encoding is in Latin-1 for exported text files. When importing into pandas, the encoding must be specified to work properly.

ny_list = pd.read_csv('ny_list.txt', encoding='latin-1')
ca_list = pd.read_csv('ca_list.txt', encoding='latin-1')
id_list = pd.read_csv('id_list.txt', encoding='latin-1')

I double check the files have been loaded correctly into dataframe format using head().

A preview of a table shows 5 entries of various plants that are present in New York state, including their USDA symbol, synonym symbol, scientific name, common name, and plant family.
Initial import of New York state plants list categorized by USDA symbol, synonym symbol, scientific name with author, national common name, and family.

Cleaning Data

The major point of interest in the imported dataframe is the ‘Family’ column. I create a new dataframe organized by this column and returning the count from each row.

ny_fam = ny_list.groupby('Family').count()
A table shows plants grouped by taxonomic family for New York state.
Initial dataframe for New York plant data grouped by taxonomic family.

Next, I remove the unwanted columns. I’ve chosen only to keep the ‘Symbol’ column as a representation of count because this variable is required for every plant instance.

ny_fam_1 = ny_fam.drop(['Synonym Symbol', 'Scientific Name with Author', 'National Common Name'], axis=1)

Then, I change the column name from ‘Symbol’ to ‘{State} Count’ to lend itself for merging the dataframes without confusion.

ny_fam_1 = ny_fam_1.rename(columns = {"Symbol":"NY Count"})
Two tables show a before and after image of a table where the column named 'Symbol' changes to 'NY Count.'
Column before (left) and after (right) a name change.

I complete the same process for the California and Idaho data.

ca_fam = ca_list.groupby('Family').count()
ca_fam_1 = ca_fam.drop(['Synonym Symbol', 'Scientific Name with Author', 'National Common Name'], axis=1)
ca_fam_1 = ca_fam_1.rename(columns = {"Symbol":"CA Count"})
id_fam = id_list.groupby('Family').count()
id_fam_1 = id_fam.drop(['Synonym Symbol', 'Scientific Name with Author', 'National Common Name'], axis=1)
id_fam_1 = id_fam_1.rename(columns = {"Symbol":"ID Count"})

Reset the index to prepare the data frames for outer merges based on column names. The index is set to ‘Family’ as default, from the initial data frame creation using the count() function. To discourage any unwanted changes, I create a copy of each data frame as I go.

ny_fam_2 = ny_fam_1.copy()
ny_fam_2 = ny_fam_2.reset_index()
ca_fam_2 = ca_fam_1.copy()
ca_fam_2 = ca_fam_2.reset_index()
id_fam_2 = id_fam_1.copy()
id_fam_2 = id_fam_2.reset_index()
Two tables show a before and after image of New York state plant family data. The first table shows plant families as the index and the second table shows plant families as a column, with a new numerical index.
New York dataframe before (left) and after (right) the index was reset to make the plant families a column.

Merging Data

To preserve all the plant species regardless of presence in each individual state, I perform outer merges. This will allow for areas without data to be filled with zeros after the family counts are combined.

combo1 = pd.merge(ny_fam_2, ca_fam_2, how='outer')
combo2 = pd.merge(combo1, id_fam_2, how='outer')
A table shows the combined plant family data for New York, California, and Idaho.
Plant family table with counts from each state, before formatting.
pd.options.display.float_format = '{:,.0f}'.format
combo2 = combo2.fillna(0)
A table shows combined data for plant families in New York, California, and Idaho where the numbers are formatted to show zero decimal places and any instances of no data are replaced by zeroes.
Plant family table with counts from each state, formatted to drop decimals and replace NaNs with zeros.

Creating a New Column

I added a column to aid in visualizations. I created a function to return the state with the highest presence of each plant family based on the existing columns.

def presence(row):
    if row['NY Count'] > row['CA Count'] and row['NY Count'] > row['ID Count']:
        return 'NY'
    elif row['CA Count'] > row['NY Count'] and row['CA Count'] > row['ID Count']:
        return 'CA'
    elif row['ID Count'] > row['NY Count'] and row['ID Count'] > row['CA Count']:
        return 'ID'
    elif row['NY Count'] == row['CA Count'] and row['NY Count'] > row['ID Count']:
        return 'CA/NY'
    elif row['CA Count'] == row['ID Count'] and row['CA Count'] > row['NY Count']:
        return 'CA/ID'
    elif row['ID Count'] == row['NY Count'] and row['ID Count'] > row['CA Count']:
        return 'ID/NY'
    else:
        return 'Same'
    
combo2['Highest Presence'] = combo2.apply(presence, axis=1)
A table of plant families from New York, California, and Idaho shows counts for each family and a new column that names which state has the highest presence of each plant family.
Table with added column to indicate highest presence of species count within each plant family.

Below is the full table of all plant families in the dataframe.

 FamilyNY CountCA CountID CountHighest Presence
0Acanthaceae770CA/NY
1Acarosporaceae1118ID
2Aceraceae462924NY
3Acoraceae524NY
4Actinidiaceae300NY
5Adoxaceae200NY
6Agavaceae4480CA
7Aizoaceae5420CA
8Alismataceae645333NY
9Amaranthaceae788238CA
10Amblystegiaceae6400NY
11Anacardiaceae464722CA
12Andreaeaceae300NY
13Annonaceae300NY
14Anomodontaceae800NY
15Apiaceae190372257CA
16Apocynaceae486042CA
17Aquifoliaceae2130NY
18Araceae26183NY
19Araliaceae2668NY
20Aristolochiaceae2893NY
21Asclepiadaceae506720CA
22Aspleniaceae2376NY
23Asteraceae2,0573,8582,260CA
24Aulacomniaceae700NY
25Azollaceae440CA/NY
26Bacidiaceae110CA/NY
27Balsaminaceae10611ID
28Bartramiaceae1100NY
29Berberidaceae215925CA
30Betulaceae864353NY
31Bignoniaceae9110CA
32Blechnaceae5117CA
33Boraginaceae127478263CA
34Brachytheciaceae5900NY
35Brassicaceae4681,123774CA
36Bruchiaceae400NY
37Bryaceae2220NY
38Buddlejaceae450CA
39Butomaceae202ID/NY
40Buxaceae500NY
41Buxbaumiaceae500NY
42Cabombaceae663CA/NY
43Cactaceae1023878CA
44Callitrichaceae161811CA
45Calycanthaceae720NY
46Campanulaceae7614657CA
47Cannabaceae13810NY
48Cannaceae400NY
49Capparaceae184926CA
50Caprifoliaceae18210781NY
51Caryophyllaceae338506414CA
52Celastraceae24184NY
53Ceratophyllaceae855NY
54Cercidiphyllaceae200NY
55Chenopodiaceae245404245CA
56Cistaceae44270NY
57Cladoniaceae522NY
58Clethraceae400NY
59Climaciaceae500NY
60Clusiaceae521512NY
61Commelinaceae37140NY
62Convolvulaceae6813017CA
63Cornaceae553436NY
64Crassulaceae6223057CA
65Cucurbitaceae41496CA
66Cupressaceae3913030CA
67Cuscutaceae315631CA
68Cyperaceae1,016733663NY
69Dennstaedtiaceae855NY
70Diapensiaceae800NY
71Dicranaceae2000NY
72Dioscoreaceae600NY
73Dipsacaceae17108NY
74Ditrichaceae920NY
75Droseraceae8116CA
76Dryopteridaceae1216571NY
77Ebenaceae770CA/NY
78Elaeagnaceae161012NY
79Elatinaceae6144CA
80Empetraceae1360NY
81Entodontaceae800NY
82Ephemeraceae500NY
83Equisetaceae483651ID
84Ericaceae236310110CA
85Eriocaulaceae730NY
86Euphorbiaceae11123366CA
87Fabaceae6041,855871CA
88Fagaceae96910NY
89Fissidentaceae2211NY
90Flacourtiaceae200NY
91Fontinalaceae900NY
92Fumariaceae312820NY
93Funariaceae2100NY
94Gentianaceae72162122CA
95Geraniaceae348025CA
96Ginkgoaceae200NY
97Grimmiaceae233CA/ID
98Grossulariaceae4615072CA
99Haemodoraceae700NY
100Haloragaceae372820NY
101Hamamelidaceae820NY
102Hippocastanaceae1420NY
103Hippuridaceae222Same
104Hydrangeaceae245314CA
105Hydrocharitaceae454430NY
106Hydrophyllaceae1533689CA
107Hylocomiaceae800NY
108Hymeneliaceae114ID
109Hymenophyllaceae200NY
110Hypnaceae2000NY
111Iridaceae4611426CA
112Isoetaceae393028NY
113Juglandaceae52102NY
114Juncaceae162177143CA
115Juncaginaceae92213CA
116Lamiaceae399413182CA
117Lardizabalaceae200NY
118Lauraceae12110NY
119Lecanoraceae311NY
120Lemnaceae274517CA
121Lentibulariaceae372317NY
122Leucobryaceae200NY
123Liliaceae263741243CA
124Limnanthaceae3363CA
125Linaceae365220CA
126Lycopodiaceae114947NY
127Lygodiaceae200NY
128Lythraceae252616CA
129Magnoliaceae2000NY
130Malvaceae6628462CA
131Marsileaceae21512CA
132Melastomataceae1200NY
133Meliaceae330CA/NY
134Menispermaceae200NY
135Menyanthaceae1073NY
136Mniaceae1000NY
137Molluginaceae493CA
138Monotropaceae193121CA
139Moraceae21165NY
140Myricaceae2250NY
141Najadaceae252110NY
142Nelumbonaceae950NY
143Nyctaginaceae301578CA
144Nymphaeaceae502330NY
145Oleaceae39490CA
146Onagraceae237661314CA
147Ophioglossaceae605348NY
148Orchidaceae285175173NY
149Orobanchaceae227451CA
150Orthotrichaceae1100NY
151Osmundaceae1000NY
152Oxalidaceae705847NY
153Paeoniaceae242CA
154Papaveraceae389826CA
155Parmeliaceae111Same
156Pedaliaceae11258CA
157Phytolaccaceae470CA
158Pinaceae5211365CA
159Plantaginaceae647833CA
160Platanaceae980NY
161Plumbaginaceae16220CA
162Poaceae1,9272,3471,507CA
163Podostemaceae300NY
164Polemoniaceae35637279CA
165Polygalaceae29170NY
166Polygonaceae331917435CA
167Polypodiaceae9149CA
168Polytrichaceae2300NY
169Pontederiaceae17176CA/NY
170Portulacaceae24203120CA
171Potamogetonaceae11583103NY
172Pottiaceae3421NY
173Primulaceae67104102CA
174Pteridaceae1611139CA
175Pyrolaceae546567ID
176Ranunculaceae288434412CA
177Resedaceae780CA
178Rhamnaceae1820220CA
179Rosaceae1,305803609NY
180Rubiaceae15723072CA
181Ruppiaceae11177CA
182Rutaceae18120NY
183Salicaceae284352383ID
184Salviniaceae530NY
185Santalaceae959ID/NY
186Sapindaceae5373CA
187Sarraceniaceae11160CA
188Saururaceae230CA
189Saxifragaceae55219234ID
190Scheuchzeriaceae555Same
191Schistostegaceae202ID/NY
192Schizaeaceae200NY
193Scrophulariaceae4301,146556CA
194Selaginellaceae61514CA
195Sematophyllaceae600NY
196Simaroubaceae474CA
197Smilacaceae2230NY
198Solanaceae11824463CA
199Sparganiaceae242224ID/NY
200Sphagnaceae4231NY
201Staphyleaceae220CA/NY
202Sterculiaceae2300CA
203Styracaceae790CA
204Symplocaceae500NY
205Taxaceae1042NY
206Teloschistaceae111Same
207Tetraphidaceae200NY
208Theliaceae300NY
209Thelypteridaceae26913NY
210Thuidiaceae300NY
211Thymelaeaceae620NY
212Tiliaceae2200NY
213Trapaceae500NY
214Tropaeolaceae220CA/NY
215Typhaceae6105CA
216Ulmaceae231910NY
217Urticaceae526132CA
218Valerianaceae135927CA
219Verbenaceae531267CA
220Violaceae17612079NY
221Viscaceae12446CA
222Vitaceae55184NY
223Vittariaceae200NY
224Xyridaceae1500NY
225Zannichelliaceae555Same
226Zosteraceae580CA
227Zygophyllaceae5315CA
228Aloaceae020CA
229Aponogetonaceae020CA
230Arecaceae0150CA
231Basellaceae040CA
232Bataceae020CA
233Burseraceae020CA
234Caulerpaceae020CA
235Crossosomataceae0189CA
236Cyatheaceae030CA
237Cymodoceaceae050CA
238Datiscaceae020CA
239Elaeocarpaceae040CA
240Ephedraceae0160CA
241Fouquieriaceae030CA
242Frankeniaceae060CA
243Garryaceae0110CA
244Gracilariaceae020CA
245Gunneraceae030CA
246Halymeniaceae020CA
247Krameriaceae080CA
248Lennoaceae060CA
249Loasaceae08429CA
250Melianthaceae020CA
251Myoporaceae020CA
252Myrtaceae0320CA
253Parkeriaceae040CA
254Passifloraceae060CA
255Pittosporaceae080CA
256Punicaceae020CA
257Rafflesiaceae020CA
258Scouleriaceae033CA/ID
259Simmondsiaceae040CA
260Stereocaulaceae020CA
261Tamaricaceae0123CA
262Ulvaceae030CA
263Verrucariaceae002ID

Visualizing the Data

I created a count plot using seaborn to show which states, or state combinations, have the highest variety within each plant family.

base_color = sb.color_palette()[2]
sb.countplot(data=combo4, x='Highest Presence', color="#B6D1BE", order=combo4['Highest Presence'].value_counts().index)
n_points = combo4.shape[0]
cat_counts = combo4['Highest Presence'].value_counts()
locs, labels = plt.xticks()
for loc, label in zip(locs, labels):
    count = cat_counts[label.get_text()]
    pct_string = count
    plt.text(loc, count+5, pct_string, ha='center', color='black', fontsize=12)
plt.xticks(rotation=25)
plt.xlabel('')
plt.ylabel('')
plt.title('Highest Concentration of Plant Families by State', fontsize=14, y=1.05)
plt.ylim(0, 140)
sb.despine();
A vertical bar graph show the highest concentration of plant families organized by state, where the concentrations are high to low as follows: California, New York, California/New York, Idaho, all the states tie, Idaho/New York, and California/Idaho.
Shows the count of plant families with the highest concentration in each state.

Further Considerations

There are many factors that play into plant family diversity. The comparison of plant families in New York, California, and Idaho was purely out of curiosity. Further investigations should take into account each state’s ecosystem types and land usage and ownership that may influence species diversity.

Data Exploration with Student Test Scores

Data Exploration with Student Test Scores

I explored a set of student test scores from Kaggle for my Udacity Data Analyst Nanodegree program. The data consists of 1000 entries for students with the following categories: gender, race/ethnicity, parental level of education, lunch assistance, test preparation, math score, reading score, writing score. My main objective was to explore trends through the stages of univariate, bivariate, and multivariate analysis.

Preliminary Data Cleaning

For this project, I used numpy, pandas, matplotlib.pyplot, and seaborn libraries. The original data has all test scores as integer data types. I added a column for a combined average of math, reading, and writing scores and three columns for the test scores converted into letter grade.

# import all packages and set plots to be embedded inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb

%matplotlib inline
labels = ['gender', 'race/ethnicity', 'par_level_educ', 'lunch', 'test_prep', 'math', 'reading', 'writing']
tests = pd.read_csv('StudentsPerformance.csv', header=0, names=labels)
tests.info()
Output of info() for student test scores.
tests.head(10)
Output of head() for student test scores.

Univariate Analysis

Histograms provide a sense of the spread of test scores across subject. Count plots provide counts for test preparation course attendance and parental level of education.

plt.figure(figsize=[10,4])
plt.subplot(1, 3, 1)
plt.hist(data=tests, x='math', bins=20)
plt.title('Math')
plt.xlim(0,100)
plt.ylim(0,160)
plt.ylabel('Number of Students', fontsize=12)
plt.subplot(1, 3, 2)
plt.hist(data=tests, x='reading', bins=20)
plt.title('Reading')
plt.xlim(0,100)
plt.ylim(0,160)
plt.subplot(1, 3, 3)
plt.hist(data=tests, x='writing', bins=20)
plt.title('Writing')
plt.xlim(0,100)
plt.ylim(0,160)
plt.suptitle('Test Scores', fontsize=16, y=1.0);
Histograms showing the spread of student test scores across all topics.
ed_order = ['some high school', 'high school', 'some college', 
            'associate\'s degree', 'bachelor\'s degree', 'master\'s degree']
base_color = sb.color_palette()[9]
sb.countplot(data=tests, x='par_level_educ', color=base_color, order=ed_order)
n_points = tests.shape[0]
cat_counts = tests['par_level_educ'].value_counts()
locs, labels = plt.xticks()
for loc, label in zip(locs, labels):
    count = cat_counts[label.get_text()]
    pct_string = count
    plt.text(loc, count-35, pct_string, ha='center', color='black', fontsize=12)
plt.xticks(rotation=25)
plt.xlabel('')
plt.ylabel('')
plt.title('Parental Education Level of Student Test Takers');
Bivariate count plots of student test scores across parental levels of education.

Bivariate Analysis

Violin plots illustrate average test scores and test preparation course attendance. Box plots provide visual representation of the quartiles within each subject area. I sorted level of education from the lowest to highest level captured by the data.

base_color=sb.color_palette()[0]
g = sb.violinplot(data=tests, y='test_prep', x='avg_score', color=base_color)
plt.xlabel('')
plt.ylabel('')
plt.title('Average Test Scores and Preparation Course Completion', fontsize=14)
g.set_yticklabels(['Did Not Complete', 'Completed Course'], fontsize=12);
Violin plots that show average student test scores base on level of test preparation.
ed_order = ['some high school', 'high school', 'some college', 
            'associate\'s degree', 'bachelor\'s degree', 'master\'s degree']
sb.boxplot(data=tests, x='reading', y='par_level_educ', order=ed_order, palette="Blues")
plt.xlabel('')
plt.ylabel('')
plt.title('Reading Scores and Parental Level of Education', fontsize=14);
Box plots that show reading scores across varying levels of parental education.

Multivariate Analysis

A swarm plot explores average test scores, parental level of education, and test preparation course attendance. Box plots show test scores for each subject, divided by gender and test preparation course attendance.

ed_order = ['some high school', 'high school', 'some college', 
            'associate\'s degree', 'bachelor\'s degree', 'master\'s degree']
sb.swarmplot(data=tests, x='par_level_educ', y='avg_score', hue='test_prep', order=ed_order, edgecolor='black')
legend = plt.legend(loc=6, bbox_to_anchor=(1.0,0.5))
plt.xticks(rotation=15)
plt.xlabel('')
plt.ylabel('')
legend.get_texts()[0].set_text('Did Not Complete')
legend.get_texts()[1].set_text('Completed')
plt.ylim(0,110)
plt.title('Average Test Scores by Parental Level of Education and Test Preparation Course Participation');
A swarm plot that shows student test scores, test preparation level, and the highest levels of parental education.
plt.figure(figsize=[15,4])
plt.subplot(1, 3, 1)
g = sb.boxplot(data=tests, x='test_prep', y='math', hue='gender')
plt.title('Math')
plt.xlabel('')
plt.ylabel('')
plt.ylim(0,110)
g.set_xticklabels(['Did Not Complete', 'Completed Course'])
plt.subplot(1,3,2)
g = sb.boxplot(data=tests, x='test_prep', y='reading', hue='gender')
plt.title('Reading')
plt.xlabel('')
plt.ylabel('')
plt.ylim(0,110)
g.set_xticklabels(['Did Not Complete', 'Completed Course'])
plt.subplot(1,3,3)
g = sb.boxplot(data=tests, x='test_prep', y='writing', hue='gender')
plt.title('Writing')
plt.xlabel('')
plt.ylabel('')
plt.ylim(0,110)
g.set_xticklabels(['Did Not Complete', 'Completed Course']);
Multivariate box plots showing test scores in Math, Reading, and Writing based on student gender and test preparation level.

Cleaning Data with Pandas

A project for my Udacity Data Analyst Nanodegree Program involved wrangling messy data using pandas. Although my coursework reviewed data cleaning methods, I revisited documentation for specific functions. Here’s a breakdown of the steps I used with pandas to clean the data and complete the assignment.

The examples from my assignment involve a collection of WeRateDogs™ data retrieved from Twitter.

Import Libraries:

Import pandasNumPy, and Python’s regular expression operations library (re).

import pandas as pd
import numpy as np
import re

Import Files:

Use read_csv to load the files you wish to clean.

twt_arc = pd.read_csv('twitter_archive.csv')
img_pred = pd.read_csv('image_predictions.csv')
twt_counts = pd.read_csv('tweet_counts.csv')

Create Copies:

Create copies of the original files using copy before cleaning just in case you need to restore some of the original contents.

twt_arc_clean = twt_arc.copy()
img_pred_clean = img_pred.copy()
twt_counts_clean = twt_counts.copy()

Merge Data:

Combine specific files using the merge function.

In this example, the main data is in the Twitter archive file. I perform a left merge to maintain the original contents of this file and add the image prediction and tweet count files as the original tweet IDs aligned.

df1 = pd.merge(twt_arc_clean, img_pred_clean, how='left')
df2 = pd.merge(df1, twt_counts, how='left')

Drop Columns:

Remove unwanted columns using the drop function. List the columns to remove and specify the axis as ‘columns’.

The Twitter data includes mostly individual tweets, but some of the data is repeated in the form of retweets.

First, I make sure the data only includes tweets where the ‘retweeted_status_id’ was null using the isnull function. Then, I drop the columns related to retweets.

df2_clean = df2_clean[df2_clean['retweeted_status_id'].isnull()]

df2_clean = df2_clean.drop(['in_reply_to_status_id', 'in_reply_to_user_id', 
                          'retweeted_status_id','retweeted_status_user_id',                                                        
                          'retweeted_status_timestamp'], axis='columns')

Change Data Types:

Use astype by listing the preferred data type as the argument.

The Tweet IDs were uploaded as integers, so I convert them to objects.

df2_clean.tweet_id = df2_clean.tweet_id.astype(object)

Use to_datetime to convert a column to datetime by entering the selected column as the argument.

Time stamps were objects instead of datetime objects. I create a new column called ‘time’ and delete the old ‘timestamp’ column.

df2_clean['time'] = pd.to_datetime(df2_clean['timestamp'])

df2_clean = df2_clean.drop('timestamp', 1)

Replace Text:

Use the replace function and list the old value to replace followed by the new value.

Text entries for this data set had the shortened spelling of ampersand instead of the symbol itself.

df2_clean['text'] = df2_clean['text'].replace('&', '&')

Combine and Map Columns:

First, create a new column. Select the data frame, applicable columns to combine, determine the separator for the combined contents, and join the column rows as strings.

Next, use unique to verify all the possible combinations to re-map from the result.

Then, use map to replace row entries with preferred values.

In this case, I had 4 columns called ‘doggo’, ‘floofer’, ‘pupper’ and ‘puppo’ that determine whether or not a tweet contains these words. I change it to a single column of ‘dog type’. Then, I map the values to be shorter versions of the combined column entries.

df2_clean['dog_type'] = df2_clean[df2_clean.columns[6:10]].apply(lambda x:                                                                    
                ','.join(x.dropna().astype(str)), axis=1)

df2_clean['dog_type'].unique()

df2_clean['dog_type'] = df2_clean.dog_type.map({'None,None,None,None': np.nan, 
                'doggo,None,None,None':'doggo',
                'None,None,None,puppo':'puppo', 
                'None,None,pupper,None':'pupper',
                'None,floofer,None,None':'floofer', 
                'doggo,None,None,puppo':'doggo/puppo',
                'doggo,floofer,None,None':'doggo/floofer', 
                'doggo,None,pupper,None':'doggo/pupper'})

Remove HTML Tags:

Write a function to remove HTML tags using re. Compile the tags by specifying ‘<.*?>’, and use sub to replace the compiled tags with empty spaces.

def remove_html_tags(text):
    clean = re.compile('<.*?>')
    return re.sub(clean, '', text)

df2_clean['source'] = df2_clean['source'].apply(remove_html_tags)

 

Reducing Plastic Use

Reducing Plastic Use

Various pieces of plastic trash debris are strewn alongside seaweed and rocks on a beach.
Assorted plastic trash on the beach at Pelican Cove Park in Rancho Palos Verdes, CA, 2017.

In the spirit of this year’s Earth Day theme (‘End Plastic Pollution’), I researched the fate of plastic. The Environmental Protection Agency (EPA) prepared a report for 2014 municipal waste stream data for the United States. Plastic products were either recycled, burned for energy production, or sent to landfills. I used pandas to look at the data and Matplotlib to create a graph. I included percentages for each fate and compared the categories of total plastics, containers and packaging, durable goods, and nondurable goods.

A graph compares different types of plastic products and their fate in the municipal waste stream.
Percentages of total plastics and plastic types that get recycled, burned for energy, or sent to a landfill, according to the EPA.

The EPA data shows a majority of plastic products reported in the waste stream were sent to landfills. Obviously, not all plastic waste actually reaches a recycling facility or landfill. Roadsides, waterways, and beaches are all subject to plastic pollution. Decreasing personal use of plastic products can help reduce the overall production of waste.

Here are some ideas for cutting back on plastic use:

  • Bring reusable shopping bags to every store.
    • Utilize cloth bags for all purchases.
    • Opt for reusable produce bags for fresh fruit and vegetables instead of store-provided plastic ones.
  • Ditch party plasticware.
    • Buy an assortment of silverware from a thrift store for party use.
    • Snag a set of used glassware for drinks instead of buying single-use plastic cups.
  • Use Bee’s Wrap instead of plastic wrap.
    • Bee’s Wrap is beeswax covered cloth for food storage. It works exactly the same as plastic wrap, but it can be used over and over.
  • Choose glassware instead of plastic zip-locked bags for storing food.
    • Glass containers like Pyrex can be used in place of single-use plastic storage bags.
  • Say ‘no’ to plastic straws.
    • Get in the habit of refusing a straw at restaurants when you go out.
    • Bring a reusable straw made out of bamboo, stainless steel, or glass to your favorite drink spot.

 

To check out the code for the figure I created, here’s the repository for it.